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On the flow of an elastico-viscous liquid in a curved
pipe under a pressure gradient
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Consideration is given to the flow of an idealized elastico-viscous liquid in a
curved pipe under a pressure gradient. By using the series expansion method of
Dean (1927, 1928) in powers of a/R where a is the radius of the pipe and R the
radius of curvature of its ‘central line’, it is shown that the general nature of the
motion is similar to that of the motion of a Newtonian viscous liguid, the liquid
elements moving along the pipe in two sets of spirals separated by the central
plane. However elasticity of the type considered could strongly affect the pitch
of these spirals. To the approximation considered, the flow pattern of the elastico-
viscous liquid depends only on the limiting (zero-shear-rate) viscosity 7, and the
first moment, K,, of the distribution of relaxation times. The corresponding
stress components involve also the second moment of this distribution.

It is also shown that the presence of elasticity in the liquid increases the rate

of discharge of the liquid.

1. Introduction

During the last fifteen years there has been an increasing interest in the flow
behaviour of non-Newtonian fluids, especially fluids that exhibit elasticity in
shear, these being known as elastico-viscous liquids. Efforts have been made to
characterize these materials by general rheological equations of state, and it is
becoming apparent that to do this any complete way requires high-powered
mathematies, and the resulting equations are often too complicated to be handled
in flow problems other than those involving simple shearing (see, for example,
Coleman & Noll 1959, 1961).

Since many of these materials are of industrial importance, it is clearly desir-
able that the theoretician should be able to characterize them by simple equations
of state that give an approximate description of observed behaviour and yet are
simple enough to be useful in flow problems other than those involving simple
shearing (Oldroyd 1962).

When attention is confined to small rates of shear it is well known that many
elastico-viscous liquids can be characterized by a spectrum of relaxation times
(Walters 1960, 1961). We shall confine ourselves to a consideration of such
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materials in the present paper. The equations of state for these materials (at
small rates of shear) can be written in the form (Walters 1960)f

Pix = — PYir+ Digs (1)
¢
pa=2[ Y-, (2)
where W(t—t') = f Z_VQ e—t=trr dr,
0

N(1) being the distribution funection of relaxation times 7. In these equations,
;1 18 the stress tensor, p an arbitrary isotropic pressure, g, the metric tensor of
a fixed co-ordinate system z?, and ef}) is the rate-of-strain tensor.

There are an infinite number of possible sets of equations of state which are
valid for all eonditions of motion and stress and which reduce to (2) when the
rate of strain is restricted to be small (cf. Oldroyd 1950; Walters 1962a). Many
of these will be too complicated to be useful in general flow problems. A detailed
theoretical investigation has recently begun for one of the simplest possible sets
of generally valid equations of state. An investigation of this sort is a necessary
first step in the study of materials with complicated memory-type equations of
state. The equations of state in question, corresponding to the liquid designated
B’ by Walters (19624), are of the form (1) and

¢ i Pk
Pt =2 [ W) o o @ ) )
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where z'? (= x'¥(x,t,t')) is the position at time ¢’ of the element that is instan-

taneously at the point z? at time ¢.
The liquid designated liquid B by Oldroyd (1950) with equations of state

Pl A, B%p’““ = 27;0(1 + A, Sbi) eWik T (4)

is a special case of liquid B’, obtained by writing
N(1) = 10(Ag/A;) 6(T) + 0l (Ar — A5)[A} 6(T = 24), § (5)
in equations (1) and (3). The Newtonian liquid of coustant viscosity 7, is also
a special case, given by N(7) = 7,8(r). (6)

In the present paper, we shall be concerned with an investigation of the flow
of liquid B’ through a curved pipe under a pressure gradient. The work was
suggested by Dean’s treatment of the associated viscous flow problem (Dean
1927, 1928). To the authors’ knowledge, no theoretical work has been done on
the flow of elastico-viscous liquids through curved pipes, although Jones (1960)
has considered the problem for a non-Newtonian visco-inelastic liquid.

1 Covariant suffixes are written below, contravariant suffixes above, and the usual
summation convention for repeated suffices is assumed.

I B/b¢ is the convected time derivative introduced by Oldroyd (1950).

§ 0 denotes a Dirac delta function defined in such a way that

8(z) =0, (x *0), f

o]

8(x) do = on S(zydx = 1.
@ 0
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2. Flow through a curved pipe

It is convenient to consider the motion referred to the co-ordinate system
introduced by Dean (1927, 1928); this co-ordinate system is shown in figure 1.
OS is the axis of the anchor ring formed by the pipe wall. C is the centre of the
section of the pipe by a plane through OS making an angle & with a fixed axial
plane. CO is the perpendicular drawn from C onto OS, and is of length R; R is,
therefore, the radius of the circle in which the lines of centres of sections is coiled.
The plane through O perpendicular to OS and the line traced out by C will be
called the central plane and the central line, respectively, of the pipe. The
position of any point P in the section can be specified by the orthogonal co-
ordinates, r, i, 0; r is its distance from C, and ¥ is the angle between CP and a
line through C parallel to OS. The surface of the pipe is then given by r = a,
where a is the radius of any section. The line element dS is given by

ds? = (dr)2+ (rdyr)?2+ ([R +rsin ] d0)2. (7)

We shall suppose that the physical components of the velocity vector corre-
sponding to these co-ordinates are U, ¥V, W, and that the general direction of
flow is the direction in which 6 increases.

As in the case considered by Dean, we shall suppose that the motion of the
liquid is due to a fall of pressure along the pipe. The differential equations of
motion relating the physical components of the partial stress tensor p(;,, the
pressure p and the acceleration, for a steady motion in which U, V, W (but not p)
are independent of ¢, are

@_*_KQU?_E_ Wsing 1 9p  o{r(R+rsiny)pom}
or " roy r (R+rsinyg)] or

Cor r(R+rsinyr) or
H(R+rsing) poy} Py PlenSiny

r(R+rsin ) oy r  (R+rsiny)’

Uarv) 4 VoV W2cosy ] _ %p  H(B+rsing) pyy}
ror roy  (R+rsiny) rog - r(R+rsing) oy

SR +rsin ) i) piancoss
r{B+rsing)or  (R+rsing)’

[Uﬂ‘(R—H‘smz/f YW} Vo{(R+rsiny) W}]

(R+rsiny)or (R +rsiny) oy
op o{r(R+rsiny)2pie}  O{(R+rsiny)2pye}

“(R+rsinyg)ed  r(R+rsiny)?er r(R+rsiny)2oy °
and the equation of continuity is

8U+U+ Usiny L Vcﬂ+?_17
or (R+rsiny)  (R+rsiny) " roy

=0. (9)

The full equations of state relating the physical components of partial stress
and velocity are somewhat complicated; these equations must be solved in con-
junction with (8) and (9) and the boundary conditions on U, V, W. As it is
difficult to obtain a general solution of all the equations, we shall make an
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assumption regarding the curvature of the pipe, namely that the quantity a/R
is small. Then it is possible to replace

1/(R+rsiny) by 1/R
and 0/or+siny[(R+rsiny), o/royr +cosyr/(R+rsiny) by o/or, ofroy,

S

Ficure 1. The co-ordinate system.

respectively. Also, we shall neglect ¢®%?; because this is at most of order a/E¥
and is seen to occur only in the expression for p(,, which is itself divided by R in
the stress equations of motion. Essentially, these are the approximations intro-
duced by Dean (1927). The equations of motion and continuity under these
conditions reduce to

[U@U VoU V* W32sin 1,0] op (TP %_z)ﬁ@_?@@sﬂ

==L

Y or + r alp' r R or ror Talp' 7 R s
(10)
Ua(r V) n I'SV_ I/V2 cos 1ﬁ' _ _a;'p +a])£,/,¢,) @(r%}i@) _Pf@j?sjk an
ror Talp' R - Talp’ Talp’ 7.287. R )
UoWw VW] __ dp  2(rpes) , 2pue 5
P[ o o RO ror + roy’ (12)
U U oV
‘g;+?+m =0. (13)

As U, ¥V, W are assumed independent of 8 it follows that the partial stresses
(i are independent of ; then, from equation (12), we have that p is of the form
Of (r, ) + fa(r, ¥); finally, from (10) and (11), it follows that f; must be a constant.
Following Dean (1927), we write

— R-10p/26 = G, (14)

where @ is a constant mean pressure gradient—the space-rate of decrease of p
along the central line.

t ¢80 is zero for flow along a straight pipe, and so is at most of order a/R during flow
through a curved pipe.
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It is possible to write equations (10) to (13) in non-dimensional form by using
the following substitutions:
U=nwruja, V=wla, W=Ww, r=ar, p=(nv/a*)p*)
e P%m) Pinw) (Wa/v) P;:tltf)
Par) = 2 P Py (Woa/v) piyo) | >
(Woa/v) pary  (Woa/v) piyey  (Woa/v)? pisey

where W) has the dimensions of a velocity and

v = 10/p> no(= f:N(T) d"r)

being the limiting viscosity at small rates of shear (Walters 1960). Equations
(10) to (138) then become
wow vou

2
=+ 7 ——— s Lw?sinyr
ory 0% 1y

p* 12, WPhwy Puw  par

_opr 1@ Doy _Puwy) 17, 16

o (11 Diryr) + roy T ory EPw siny,  (16)
2 2 ¥ PG P !

wdlr) | 0004y s cosy = — p ap(W¢)+%£LM_%Lp(05) cosyr, (17)

vrlarl +rlaw/r oy oy rior,

wdw | vdw _ A pie) | Pwe
ory +rlavﬁ_0+ ryor, +rlavﬁ’ (18)
o u v
b =0 19
8r1+r1+r181ﬁ ’ (19)
where it has been convenient to define (cf. Dean 1927, 1928)
L =2Wiadv:R, C = Ga?/n,W,. (20)

Following Dean, we suppose that W, is the 6-component of the velocity at any
point of the central line, in the case of slow motion; and in this case, the dis-
tribution of the #-component of velocity approximates to that occurring in the
straight-pipe problem, where it is seen to be parabolic (Walters 1962¢). W,a/v
is then approximately equal to the Reynolds number n—defined as 2%a/v, where
7 is the mean velocity over the section. For slow motion it follows that
L = 2n2a/R. To find the solution to the problem of flow through a curved pipe,
we must solve equations (3), (16) to (19) with the boundary conditions

u=v=w=0 on r =1 (21)

The method of solution given below is one of successive approximation in which
it is assumed that u, v and w can be expanded in ascending powers of L.

When the pipe is straight, /R and L are zero, and it can be easily shown that
equations (3), (16) to (19) have a simple solution. In this case » = v = 0 and (18)

reduces to 0= C+Viw. (22)
Equation (22) and the boundary condition on w are satisfied by

w=1-7], (23)
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provided C = 4; the associated non-dimensional stress components are these:

pi'r”m> = 0; Pé}fm =0; p(’}:u//) = 0; } (24)
Py =0;  Dsy = Bmry;  Pasy = —2ry;
where m = KyJpa® and K, = f TN(T)d1.}
0

When the pipe is curved, and a/R and L are sufficiently small, we assume that

w = Ly + LPug+ ...,
v = Lo, +L%,+..., (25)
w = (1L—r3)+ Lw,+ L>w,+ ...,
Py = LDt + LD+ -
Piggr = Loigyn + LDyt ..
Plooy = 8mr3 + Lpgeey + LEp o + ...
Pyey = Lpgon +LPPyep+ ...,
Pirgy = — 211+ Lo + Loy + -
p(”rﬂlf) = Lpzlruzf)l + sz(”,-l,/,)z + .

In determining the relation between the velocity distribution (25) and the stress
distribution (26) from the equations of state (3), it is convenient to work in terms
of the original variables in the first instance, using the substitutions (15) later

in the analysis.
We write the displacement functions #'¢ corresponding to the velocity dis-

tribution (25) as
r’ = r+ La,(r,y,t,t")+ Lo (r, , t,8)+ ...,
U=+ LA (r, g, 8, 8) + LBy (r, 6,8 )+ .., (27)
6 = O+ yolr, Y, b, t')+ Ly (r, 6,87+ L2y, (r . t,8) + ..,

where a4, f;, v, etc., are restricted by the conditions that

(] = [y = Il = 0, (28)

etc. The velocity distribution and the displacement functions are related by the
equations (ef. Oldroyd 1950, equation (21))

or' Ubr +_I;’ or' Waor

a T o 7 w+-ﬁ 00
oy’ Uoy’ Voy Woy' o
ot o Trey TR T (29)
U vy Wao
G e Tyt R

0,

0.

+ For Oldroyd’s liquid B (equation (4)), m is given by m = 94(A, — A,)/(pa?), and m = 0
for the Newtonian liquid.
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Substituting (25) and (27) into equations (29) and equating coefficients of L,
we obtain the required displacement functions

, . Lvu, , o VU, n VR Ouy (E—1')2 vPu Quy (E—1)?
r=r “‘”L[TW“%ﬁﬁ”7+Wwf2]f@m
;L Lvy, , of v . Vug 0 (t—t)% v, 0v (F—1')?
V=v ar (t=t)+L [—a_r(t—t)+ a? 87(7‘ ___2—+a2—r251z 2 |
(31)
; m) a?—r? IV "e W)uH '
0 = _R( e (t t)—i—L[ Raaulr(t—t) - R»(t—t)]
N A 1 e e
+L[ ok TN Ry YR w3
Wovu, dw, (E—t')% vEWov, 0uy (E—8')%  voy 8le( t')z W"l’
Ra or 2 Ra* o 3 arBoy
(32)

We shall in the first instance work to first order in L.

From (30) to (32), we obtain the following results which are needed in the
determination of the stress components:

or _ Lvou, , .. ay/ Lv 9 (v, " aw_ Lv ov,

Br’—1+; Br(t £); 3 aar( )(t_t) o 1+ aw(t‘t”

or _Lvou,, . oy _ o O _ o a0 _

S ag/f(t —t'); ETO’_O’ 8—0,—-0, 8—6,_1, .
WMo g IR, >
oy’ Rad® oY R oY

of _  2rW n LWoow, o LvWyr ouy na | LWy ,

o Ra? (t—t)+7%~~-a7(t ) Ra3 E(t‘t) + Ra? walt =%

We now determine the contravariant rate-of-strain components e®™(r’, 1", ¢")
that appear in the equations of state (3), i.e. the rate-of-strain components at
time ¢’ in the element that is instantaneously at the point (r,r,0) at time ¢.
These can be obtained by writing down the rate-of-strain components for the
element at (r, 1, §) at time ¢, replacing r, i, 0, t in these components by ', ', 6", ¢/,
respectively, and using (30) to (32). In this way, we obtain

Ll ) OU 3
@rr (" ” ') = (l)rr ¢ t ' |
O () = T ) = T,
DV (r Y E) = e (r, o, 8, t)_# l.aﬁiurlil
a [Poy )’
LW, ow,
(1);/;0 Y = (1)1,/0 ¢ t 34
e lﬁ ) € 7’ 1)& 2R7’2 aw ( )
Wyr LW, 10w
e(l)rﬂ(rf, g/f’,t’) = e(l)rO(r, Iﬁ, £, tl) — "Fog‘i‘ - [2 ;Lr +1u1 (t tl)]’
O (r! 1) = e (p 4, 8t [l?f’,l_i’LJri%]
a

2r or 202 220 |
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Equations (3), (33) and (34) can now be used to determine the physical com-
ponents of the partial stress tensor. After some reduction, we obtainf

. Lvow, 9 Lv [l Bvl “1 , oLlv[ov; v, Llou]
Pary = <No—— a ar Puyy) = = Jo— a T 81)[, 5 p("lb‘) a a,’. r 7. a')[,
, 2 Wr ow, K, Wv ou
Puoy = — 1722 [ W{) 1 0a30 {2’[1/1— 6r 'é_l}]}

[
r o [Wamgow, 2K Wov | 0 (v aul
pw‘[')_L[ r W+ ad {_HT 37‘(7‘ oy

, 8K Wir? 8K Wirow, 24S,Wivrtou, 248, Wivru,
Pon= g UGSt T T e |
(35)
where S, = f T72N(1)dT.
0

It is convenient at this stage, after inspection of (13), to introduce a stream
function f(r, ) defined by

U=-20floy, V =2ffor. (36)
Writing f = v[L¢, + L3, +...], we have
13¢, _ 09, ‘
Uy = .
1 7‘11 ;3;0 1= 2;1 ‘\ (37)
—_— T2 — _r2
Uy = r oy’ Vy or, etc.j
Substituting (37) into (35), and using (15) and (26), we obtain
” a¢1 82¢1 ]
Perwor = 2(7'1 30y ryon 5’1—”) ’
o 82¢1 a¢1
Puyn = 2(7‘1 or 0y 12 8;&) ’
ow
Disey = 48s agf; 24sry 2; Smrlf,
(38)

b 0wy 0%, , 0 (99
v = g e () |
4 awl i m[s 8¢1 6 a2¢1

Pronn = ér_l -

r, Bz/f ory ’o‘vﬁ] ’

, 0%, 0,
Payn = r281ﬁ2+ N or, (rl Brl) J
where s = 7,8,/(p%a*).1

t Obtained by working in terms of the contravariant components of the stress and rate-
of-strain tensors, and later transforming to physical components in the co-ordinate
directions.

1 For Oldroyd’s liquid B (equation (4)), sis given by s = 53 A,(A; — A,)/(p%a%), and s = 0
for the Newtonian liquid.
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The associated equation, obtained from (16) and (17), after elimination of p*
and substitution of these stress components, is
71 Vi, = 2r3(1 —12) cos i + 8mr} cos i, (39)
92 190 1 ¢
h V2 = — et =]
where [87 + 7, 01y + r2 81,/2]

The solution of equation (39), satisfying the boundary conditions
0,0y = 8¢pyfor; =0 on r =1,
is $1 = {(zdz +5em) 11— (dr +12m) 1 + (dg +5'em) 1§ — 534 7} cos . (#0)
Substituting from (40) into the expressions for p(, .1, Piyyn, ete., we have
Pt = = [(f5+¥m) 11— (5 +3m) 1} + ferilsin (
Pigyn = (g +3m) ri— (F5+3m) r}+ Fgri]siny, (
Poon = — 8mry 0w, [0y —s[(G+m)ry+ G+ 2m)rf— (F +3m) i} + Jyrilsin g, (
Pyon = o [r 0P +ml(Fg +15m) + (g +im) i — (G + $5m) i+ Fgrilcosy, (44
Plrion = 0w [Ory+m[(Fg +ym) + P +§m)ri - Ga + Hm) ri+erilsing,  (
Drggn = [ — (Fg+3m)ry+ (5 +5m) r§ — 3%ri] cos . (

Substitution from (44), (45) into (18), and consideration of only those terms
involving L then gives

_;%%(l—r§)=V§wl+m{(i+% myr,— (34 2m)ri +Lrdtsinyy.  (47)
Substituting for ¢, from (40) into this equation, we have
Viw, = {— (g +im+5m2)r + (Fs +Em+2m?) ri — (Fg + 1m) 1} + shgriysiny. (
The solution of (48) which satisfies the boundary conditions, namely that w; = 0
when r; = 1 and w, is finite when r;, = 0, is
wy = sresin i {(25 + 11m + 48m2) r; — (1 + 24m + 96m?2) r3
+ (34 16m+ 48m?) r} — (1 +3m) r{ + &7 (49)

3. Stream-line projections
The differential equation of any streamline is

dr _rdy _ (R+rsing)do
v-wv oS Tw

which can be written to sufficient accuracy as

dr rdlﬁ Ra2d0

U~ 7 7 W=y
Equation (50) is complicated and it is difficult to give a closed expression for
the equation of a general streamline; Dean (1927) has pointed out that the
precise relation between 7, ¥ and 0 is of little interest, and has drawn attention
to the useful projections of stream-lines represented by (r, 0)- and (r, ¥r)-relations.

(50)
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The motion of the liquid is of special simplicity in the central plane of the pipe.
At any point on OC, ¥ is either 17 or 37; in either case, cos i and V" vanish. At
any such point the direction of the velocity of the liquid lies in the central plane;
hence a particle of liquid once in this plane does not leave it in the subsequent
motion. The motion in one half of the pipe is therefore quite distinet from that
in the other and the central plane is clearly a plane of symmetry for the motion.
The differential equation of the stream lines in the central plane is '

dr|U = Ra>d0[Wy(a?—r3).
Writing U7 = — (Lv/r) 0¢,/2¢r and putting sin ¢ = 1, we have

e (1)
RO Wola2—r2) \royr) sin g’
AL 1

RAO ~ na(l—r) {12z +59m) — (G +1m) i+ (g + 2am) i — 5378}
1

substitution for L from (20) in this equation gives
drid0 = sEgn(1—12) (44 24m —1r2). (51)

It follows from (51) that

144 L+r\" (h—ry _

7= gt 107 () (52)
where A2 = 4 4 24m and where it has been assumed that # is measured from the
point where the streamline crosses the central line r; = 0. Equation (52) was
derived by putting siniyr = 1 and therefore applies to only those parts of the
streamlines in the central plane outside the circle we have called the central line;
to obtain the parts inside the circle we write sinyy = — 1, and so reverse the sign
of #1in (52).

The other set of equations which are of interest are those giving the movement
of liquid elements in relation to the central line. This can be visualized by
constructing the projection of a streamline on the section # = const., taking
these projections as sufficiently represented by ¢; = const., where ¢, is given
by (40).

Figure 2 shows the paths of particles projected on the cross-section of the pipe,
in the cases of an elastico-viscous liquid for which m = 1 and of a Newtonian
viscous liquid (for which m = 0). It can be seen that the form of the projections
of the streamlines of the first liquid are not strongly dependent on its elasticity;
the positions of the neutral points, where the velocity in the section vanishes, are
slightly nearer the outer edge of the pipe in the case of the elastico-viscous
liquid, being at r, = 0-445, 3y = 0 or 7 when m = 1, compared with r; = 0-429,
Y =0 or m when m = 0. The data for the Newtonian liquid are taken from
Dean’s 1927 paper.

However, elasticity of the type considered could strongly affect the pitch of
the spirals in which particles of the liquid move along the pipe; figure 3 illu-
strates the dependence of the form of the streamlines in the central plane on the
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parameter m, curves being plotted for m = 0, m = 0-2andm = 1-0. The Reynolds
number used in the calculations was 63-3, this value being chosen so that the value
0, as given by (52), could be found in degrees by multiplying logarithms to the

Figure 2. Paths of particles projected on the cross-section of the pipe for m = 1 (full line)
and m = 0 (broken line). N and N’ are the neutral points for m = 1 and m = 0, respectively.

Figure 3. The path of a particle in the central plane for various values of m.

base 10 by 50 (cf. Dean 1927); and for the sake of convenience in drawing we have
assumed that a/R is 4. 1t is seen from figure 3 that an increase in m leads to a
spectacular decrease in the curvature of the streamlines in the central plane.
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4. The flux of liquid through the pipe
The rate of flow through the pipe is a constant times

1 2n
f rydry f wdyr,
0 0

and only product and higher-order terms in cos ¥ and sin i contribute to this in-
tegral. It follows, since w; makesno contribution to thisintegral (see equation (49)),
that the flux through the pipe is independent of the curvature, to the first-order
approximation; in order to study the variation of flux with curvature, therefore,
we must introduce terms of higher order. This is carried out in the following
paragraphs.

Although the relevant equations are complicated, it is possible to simplify
the working when the variation of flux with L2 only is required; the method of
simplification used is an extension of the method used already by Dean (1928).

For mathematical convenience, it is necessary to restrict the discussion to
liquids with short memories, i.e. liquids with short relaxation times. We shall
neglect terms involving (f—t')4, ¢ > 2 in equations (30) to (32). This approxima-
tion is equivalent to neglecting terms involving

foo’qu(T) dr (¢ 2)
0

in comparison with those involving

fgo TN(r)dr and foo N(r)dr
0 0

Such an approximation would be justified, for example, in the case of the dilute
polymer solutions investigated by Oldroyd, Strawbridge & Toms (1951).

Going through the same procedure as before, except that now terms involving
(t—1t')2 (¢ = 2) are ignored, it can be shown that

2 2, 2
Puy vy Puy(Ouy

” — o2 o oy N _9 _
Paroe or m[ul or? +7‘1 or oY (87’1)
" 5|1 8v2+u2 am 2w 0 7¥%+ﬂ L0 0 8—”1+u
Povr = =|r 2y Pon ey Al regley
2

e (v [ 0w, iﬁ]_%%
a() [rlw 17 ( =k (aw“‘l)]’ (54)

ow,\2 ow, 1 [ow,]?

” o awy 1 1

=2ml|— | —4riy=x—+=5 1|5+ 55

Pooyz [(87’1) ! ory 3 [8;&] ]’ (55)
ow dtw, v 02w ou owy ou

” 2 1 1 2 1

= —2+m|2u,—u 1l G431

Paoe = ory 2 1 87‘2 7 or o 187‘1 ory ory

_f_g?ﬂ%_f_i@l_i G (56)
2oy oy Y org\ry/ |’
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” _ I:-a‘/[/—bi +7 i :U‘Z) . ” a 9u] 9 ’Ul
Py = roy - tor, \r, ™ 1or, 7289r+9r1 r
AR 0 [ 8u1 8 27_) _ay 0 (vl> Uy
1
7y 8;& 1 81// 7y 87'1 ry) ory
ouy; 1 ovy 78u1 K vl) , 0uy [ dv, ul] «
(arl +7'1 81//) (7'1871//+T] ory (;'1 ) B rla’ﬁ [Tla’ﬁ } (57)

1 dw, ke ¢ [ ow, ! 02w1+ @u2+4 2 O (vs) 10w du
Piyon = ry oY Y7o, \r20y) 2 oy oY I“rl r) v or oy

cwy © 'vl> ow, @ ”1) 20wy ] dvy wy l_fm cw, 58
NG an\n) T e \n) Tr A ey T | T rap gl Y
When account is taken of the functional forms of ¢, and w,, and use is made of
(37), we have from (53), (54) and (57)

" . a¢2 () ¢2 y > 8
Pz = (;l—éw 7‘1—3#7'1?71//> + F cos 2 + 8,

" 0*¢ o
Digpnz = 0(71 P %& - Tza;) + G cos 2 + Gy,

P = | = st (22 |+ Hysin 2,

20y o \rory

where F,, F,, (,, G, and H, are functions of r; which need not be more particularly
specified; substituting these stress components into the associated equation of
motion obtained from (16) and (17) after elimination of p*, we find that the
equation for ¢, is of the form

Vig, = I sin 2y,

whence Py = Jysin 24, (59)
where /; and .J; are functions of »; only. Similarly, from (56) and (58),

Dirypre = Ow[0ry + Ty(ry) cos 29 + Ty(ry), (60)

Pgoye = 0w,y[r 09 + K (ry) sin 29, (61)

Substitution of these stresses in the associated equation of motion obtained
from (18) gives an equation of the form

T 2K T
r, V3w, = — (-——1 +T1 +—-l) cos 21 — (J*‘ Té)
r, T, r
E7_¢‘1 gu___?gél fﬂﬁl._,of% (1 —r2) (62)
or, oy Oy or, oy ory 1 -

where the dash denotes differentiation with respect to r,; whence w, is of the form
N (ry) cos 2 + Ny(r,). The first of these terms need not be evaluated since it
does not affect the flux. Since ¢, and the second term in the expression for
Diyey2 give a contribution to this term only, it follows that J; and A, need not be
evaluated. Thus the problem is reduced to finding 7, in the expression for
Py and then that part of w, which is a function of 7, only (@, say).
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From (37), (40), (49), (56), (60), we have
T, = {3m)(576)2} { — 2-2r, + 68475 — 166-8/5 + 1647 — 8175 + 19-2r] — 1-6r3}, (63)

where we have neglected terms of order m? to be consistent with our present
confinement of the discussion to liquids with short memories. Consideration
of terms involving r, only in (62) gives

d(rydwyfdr,)[dr) = (M3 Ny+ My N3) —d(r, T3)[dry, (64)

where it has been assumed that ¢, = Mycosy, w, = Nysiny. KEquation (64)
integrates to give

rdiwgjdr, = YM; Ny, —r, Ty, (65)
the constant of integration being zero since w, is finite at r; = 0. Substituting
for the quantities M;, N, and 7}, from (40), (49), (63) into (65) and integrating,
we have

—

1wy = H(576)2{ —[0-1839 + 3-1897m]+ [0-95 + 28-8m |72 — [2:0687 + 77-55m] rl
+[2-475 + 98-366m] 7% — [1-778 + 67-625m ] 7% + [0-785 + 25-86m] r1®
—[0-2062 + 5-0333m] 712+ [0-0286 + 0-3714m] 14— 0-0016+1%},  (66)

where the arbitrary constant of integration has been chosen so that @, vanishes
when r; = L.
The flux through the pipe per second is given by

a em
I = { rdrf Wdyr
JU 0
= 27711},a2f (1 —72) + L%, + O(L4) ] dr,.
0

Substituting from (66) and evaluating the integral, we have
I = F[1— (45L)%(0-03058 — 0-06426m)], (67)

where F, (= Wyma?/2) is the value of the flux per second through a straight pipe
of the same cross-section under the same dynamic conditions. It is observed that
the presence of elasticity in the liquid decreases the dependence of the flux
through the pipe on the curvature of the pipe, to second order in the curvature.t

Concluding, therefore, we see that the main effect of elasticity of the type
considered on the flow of an elastico-viscous liquid through a curved pipe under
a pressure gradient is to decrease the curvature of the stream lines in the central
plane and also to increase the volume of fluid flowing through the pipe in unit
time.

The authors are indebted to Prof. J. G. Oldroyd for many helpful comments
and suggestions.

T The reader is reminded that equation (67) is valid only for small values of m.
16 Fluid Mech. 16
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