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Consideration is given to the flow of an idealized elastico-viscous liquid in a 
curved pipe under a pressure gradient. By using the series expansion method of 
Dean (1927, 1928) in powers of alR where a is the radius of the pipe and R the 
radius of curvature of its ‘central line ’, it  is shown that the general nature of the 
motion is similar to that of the motion of a Newtonian viscous liquid, the liquid 
elements moving along the pipe in two sets of spirals separated by the central 
plane. However elast’icity of the type considered could strongly affect the pitch 
of these spirals. To the approximation considered, the flow pattern of the elastico- 
viscous liquid depends only on the limiting (zero-shear-rate) viscosity T~ and the 
first moment, KO,  of the distribution of relaxation times. The corresponding 
stress components involve also the second moment of this distribution. 

It is also shown that the presence of elasticity in the liquid increases the rate 
of discharge of the liquid. 

1. Introduction 
During the last fifteen years there has been an increasing interest in the flow 

behaviour of non-Newtonian fluids, especially fluids that exhibit elasticity in 
shear, these being known as elastico-viscous liquids. Efforts have been made to 
characterize these materials by general rheological equations of state, and it is 
becoming apparent that to do this any complete way requires high-powered 
mathematics, and the resulting equations are often too complicated to be handled 
in flow problems other than those involving simple shearing (see, for example, 
Coleman & No11 1959, 1961). 

Since many of these materials are of industrial importance, it  is clearly desir- 
able that the theoretician should be able to characterize them by simple equations 
of state that give an approximate description of observed behaviour and yet are 
simple enough to be useful in flow problems other than those involving simple 
shearing (Oldroyd 1962). 

When attention is confined to small rates of shear it is well known that many 
elastico-viscous liquids can be characterized by a spectrum of relaxation times 
(Walters 1960, 1961). We shall confine ourselves to a consideration of such 
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materials in the present paper. The equations of state for these materials (at 
small rates of shear) can be written in the form (Walters 1960)t 

Flow of a n  elastico-viscous liquid in a curved pipe d d  

Pik = -pgik f Pik ,  (1) 

N ( 7 )  being the distribution function of relaxation times 7.  In these equations, 
pik  is the stress tensor, p an arbitrary isotropic pressure, g,, the metric tensor of 
a fixed co-ordinate system xi, and ei,!) is the rate-of-strain tensor. 

There are an infinite number of possible sets of equations of state which are 
valid for all conditions of motion and stress and which reduce to ( 2 )  when the 
rate of strain is restricted to be small (cf. Oldroyd 1950; Walters 1 9 6 3 ~ ) .  Many 
of these will be too complicated to be useful in general flow problems. A detailed 
theoretical investigation has recently begun for one of the simplest possible sets 
of generally valid equations of state. An investigation of this sort is a necessary 
first step in the study of materials with complicated memory-type equations of 
state. The equations of state in question, corresponding to the liquid designated 
B’ by Walters (1962b),  are of the form (1) and 

where x ’ ~  ( = x ‘~ (x ,  t ,  t ’ ) )  is the position at time t‘ of the element that is instan- 
taneously at the point xi at time t. 

The liquid designated liquid B by Oldroyd (1950) with equations of state 

is a special case of liquid B‘, obtained by writing 

W7) = %(UU w + ‘lo((h1- WU 8(7 - u 3  § 

N(7)  = ?loB(7).  

(5) 

(6) 

in equations ( 1 )  and (3). The Newtonian liquid of constant viscosity ?lo is also 
a special case, given by 

In the present paper, we shall be concerned with an investigation of the flow 
of liquid B‘ through a curved pipe under a pressure gradient. The work was 
suggested by Dean’s treatment of the associated viscous flow problem (Dean 
1927, 1928). To the authors’ knowledge, no theoretical work has been done on 
the flow of elastico-viscous liquids through curved pipes, although Jones (1960) 
has considered the problem for a non-Newtonian visco-inelastic liquid. 

summation convention for repeated suffices is assumed. 
t Covariant suffixes are written below, contravariant suffixes above, and the usual 

1 b/bt is the convected time derivative introduced by Oldroyd (1950). 
S S denotes a Dirac delta function defined in such a way that 
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2. Flow through a curved pipe 
It is convenient to consider the motion referred to the co-ordinate system 

introduced by Dean (1927, 1928); this co-ordinate system is shown in figure 1. 
OX is the axis of the anchor ring formed by the pipe wall. C is the centre of the 
section of the pipe by a plane through 0s making an angle 6' with a fixed axial 
plane. CO is the perpendicular drawn from C onto OX, and is of length R; R is, 
therefore, the radius of the circle in which the lines of centres of sections is coiled. 
The plane through 0 perpendicular to OX and the line traced out by C will be 
called the central plane and the central line, respectively, of the pipe. The 
position of any point P in the section can be specified by the orthogonal co- 
ordinates, r ,  9, 8 ;  r is its distance from C, and $ is the angle between CP and a 
line through C parallel to 0s. The surface of the pipe is then given by r = c ( ,  

where a is the radius of any section. The line element dS is given by 

ds2 = (dr)' + (rd$)2 + ([R + r sin $1 do)'. (7) 

We shall suppose that the physical components of the velocity vector corre- 
sponding to these co-ordinates are U ,  V ,  W, and that the general direction of 
flow is the direction in which 0 increases. 

As in the case considered by Dean, we shall suppose that the motion of the 
liquid is due to a fall of pressure along the pipe. The differential equations of 
motion relating the physical components of the partial stress tensor p;ik) ,  the 
pressure p and the acceleration, for a steady motion in which U ,  V ,  W (but not p )  

and the equation of continuity is 

The full equations of state relating the physical components of partial stress 
and velocity are somewhat complicated; these equations must be solved in con- 
junction with (8) and (9) and the boundary conditions on U ,  P, a. As it is 
difficult to obtain a general solution of all the equations, we shall make an 
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assumption regarding the curvature of the pipe, namely that the quantity alR 
is small. Then it is possible to replace 

l /(R+rsin$) by 1/R 

and ajar f. sin $/(R + r sin $), a/r2$ cos $/(R + r sin $) by a/&, a/ra$, 

FIGURE 1. The co-ordinate system. 

respectively. Also, we shall neglect e(l)@@; because this is at most of order alRt 
and is seen to occur only in the expression for p;BB) which is itself divided by R in 
the stress equations of motion. Essentially, these are the approximations intro- 
duced by Dean (1937). The equations of motion and continuity under these 
conditions reduce to 

au u av -+-+- = 0. 
ar r ra$ 

L4s U ,  I‘, W are assumed independent of 8 it follows that the partial stresses 
piik) are independent of 8; then, from equation (121, we have tha tp  is of the form 
Oj’,(r, $) +fi(r, $); finally, from (10) and (1 11, it follows thatf, must be a constant. 
Following Dean (1927), we write 

- R-l app8 2 G ,  (14) 

where G is a constant mean pressure gradient-the space-rate of decrease of p 
along the central line. 

t dUe8 is zero for flow along a straight pipe, and so is a t  most of order a/R during flow 
through a curved pipe. 
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It is possible to write equations (1 0) to ( 1  3 )  in non-dimensional form by using 
the following substitutions 1 

CJ = vu/a, IT = iw/a,, W = KIO,  r = ar,, p = (Tov/a2)p*,‘l 

where 16 has the dimensions of a velocity and 

being the limiting viscosity at small rates of shear (Walters 1960). Equations 
(10) to (13) then become 

Following Dean, we suppose that W, is the 0-component of the velocity at any 
point of the central line, in the case of slow motion; and in this case, the dis- 
tribution of the @component of velocity approximates to that occurring in the 
straight-pipe problem, where it is seen to be parabolic (Walters 1962~). Woajv 
is then approximately equal to the Reynolds number n-defined as 28a/v, where 
‘I’ is the mean velocity over the section. For slow motion it follows that 
L = 2n2a/R. To find the solution to the problem of flow through a curved pipe, 
we must solve equations (3) ,  (16) to (19) with the boundary conditions 

- 

u = v = = 0 on r l  = 1. (21) 

The method of solution given below is one of successive approximation in which 
it is assumed that u, v and ui can be expanded in ascending powers of L. 

When the pipe is straight, a,/R and L are zero, and i t  can be easily shown that 
equations (3),  (16) to (19) have a simple solution. In  this case IC = v = 0 and (18) 
reduces to  

Equation ( 2 2 )  and the boundary condition on ui are satisfied by 

0 = c + y 1 1 1 .  

IC: = 1 - rf, 

(22) 

(23) 



Flow of an elastico-viscous liquid in u curved pipe 233 

provided C = 4; the associated non-dimensional stress components are these: 

( 2 3 )  
P);rlrl) = 0; P:**, = 0; Pyrl*) = 0; 
pYelt, =o; p;)vg) = 8mr:; p,&e) = - 2rl; 

w2, = K,/pu2 and K ,  = IOm7N(7)d7. t  where 

When the pipe is curved, and alR and L are sufficiently small, we assume that 

u = L?L1+L2U2+ ..., 
2, = Lv,+L2v2+ ..., 

‘zo = (1 - r4) + Lwl + L2w2 + . . . , 
(25) 

(26) 

In determining the relation between the velocity distribution (25) and the stress 
distribution (26) from the equations of state (3)) it is convenient to work in terms 
of the original variables in the first instance, using the substitutions (15) later 
in the analysis. 

We write the displacement functions x’i corresponding to the velocity dis- 
tribution (25) as 

(27) 1 
r’ = r + Lorl(r, $-, t ,  t ’ )  + L2a2(r,  @, t ,  t’) + . . . , 
$’ = @ + L,Ol(r, $, t ,  t’) + L2p2(r,  $-, t ,  t’) + . . . , 
6’ = 6 + yo(r, $, t ,  t ’ )  + Ly,(r, $, t ,  t’) + L2yy,(r,  $, t ,  t’) + . . . , 

where al, ,01, yl ,  etc., are restricted by the conditions that 

[a,],=, = [PlltLt = [ Y l I W  = 0, (28) 

etc. The velocity distribution and the displacement functions are related by the 
equations (cf. Oldroyd 1950, equation (21)) 

(29) 

t For Oldroyd’s liquid B (equat,ion (4)), m is given by m = qo(Al -A2) / (pa2) ,  and m = 0 
for the Newtonian liquid. 
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Substituting ( 2 5 )  and (27) into equations (29) and equating coefficients of L, 
we obtain the required displacement functions 

w, V U ,  awi ( t  - t ‘ )2  v2 w,v, au, (t  - t ’ ) 3  +- ~ _ _ _  +-? - ___ 
Ru iir 2 R U ~  a$ 3 

(32) 
We shall in the first instance work to first order in L. 

determination of the stress components: 
From (30) to  ( 3 2 ) ,  we obtain the following results which are needed in the 

We now determine the contravariant rate-of-strain components e(l)mr(r‘, $’, t ‘ )  
that appear in the equations of state (3) ,  i.e. the rate-of-strain components at 
time t’ in the element that is instantaneously at  the point ( r ,  $,8)  at time t. 
These can be obtained by writing down the rate-of-strain components for the 
element a t  ( r ,  $, N )  a t  time t ,  replacing r ,  $, 8, tin these components by r ’ ,  @’, 8’, t ‘ ,  
respectively, and using (30) to (32). In  this way, we obtain 
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Equations (3), (33) and (34) can now be used to determine the physical com- 
ponents of the partial stress tensor. After some reduction, we obtain? 

~~~a~~ , Lv 1 av, 
p;T7) = 370- -; p(p[rlG.) = 21/0 a [; + p;rp) = a ar 

It is convenient at this stage, after inspection of (13), to introduce a stream 
function f ( r ,  1c.) defined by 

rU  = -afp1c., V = a f p .  (36) 

Writing f = i1[Lq5~ + L2q5, + . . .], we have 

Substituting (37) into ( 3 5 ) ,  and using (15) and (36), we obtain 

t Obtained by working in terms of the contravariant components of the stress and rat'e- 
of-strain tensors, and later transforming to physical components in the co-ordinate 
directions. 
1 For Oldroyd's liquid B (equation ( 4 ) ) ,  s is given by s = $h,(h,-h,)/(p2a4), and s = 0 

for the Newtonian liquid. 
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The associated equation, obtained from (16) and (17), after elimination ofp* 
and substitution of these stress components, is 

rl V i  $1 = art( 1 - r;)  cos $ + 8mr; cos $, (39) 

where 

The solution of equation (39), satisfying the boundary conditions 

a$,/a$ = = 0 on rl = 1, 

is 

Substituting from (40) into the expressions for p;Tlrl)l, 

$1 = ((& + &m) r, - (& + &7&) rf + (&+Am) r: - hZ r:> cos $. (40) 

(41) 

(42) 

p;ea,l = - 8mrl awl/ar, -s[($ + m) rl + ($ + 3m) rf - (2 + 3m) r: + AT:] sin *, (43) 

cos $, (44) 

pTPls)l = at~~,/ar, + m[(& + A m )  + (2% + t m )  r; - (it + Mm) r: + &rf] sin $, (45) 

(46) 

etc., we have 

p&rl)l = - [(& + *m) rl - (& + Qm) r: + &r:] sin $, 
p$p)1 = [(?c + Sm) rl - (+z + Qm) r: +&&I sin II., 

pD;@e)1 = aull/rl a$ + m[(& + A m )  + (& + Gm) r; - ($+ + $fm) r! + 

= [ - (& + Qm) rl + (Q + g m )  r! - :$+f] cos $. 
Substitution from (44), (45) into (lS), and consideration of only those terms 
involving L then gives 

a41 a ( 1  - r;) = Vtw, +m{ ( t  +$m) rl - ( g  + 2m) r: + +rf} sin 2lr. (47) a$ ar1 

Substituting for $1 from (40) into this equation, we have 

V2, w1 = { - (?% + Qm + Qm2) rl + (& + +m + 2m2) r: - (2% + i m )  r: + &r:} sin $. (48) 

The solution of (48) which satisfies the boundary conditions, namely that w, = 0 
when rl = 1 and w, is finite when rl = 0, is 

w1 = & sin $ {(ig + 1 lm + 48~7.1~) rl - ( 1 + 84m + 96m2) r: 

+ ($+ 16m+ 48m2) r! - (i + 3m) r: +&r:}. (49) 

3. Stream-line projections 
The differential equation of any streamline is 

dr rdy? (R+rsin$)dH 
u v  W 

~~ ~ - - - -- - , 

which can be written to sufficient accuracy as 

dr rd$  - Rcc2d8 
U T' T$i(a2-r2) * 

- ____ - - ~~~ - 

Equation (50) is complicated and it is difficult to give a closed expression for 
the equation of a general streamline; Dean (1927) has pointed out that the 
precise relation between r ,  $ and H is of little interest, and has drawn attention 
to the useful projections of stream-lines represented by (r,  8)- and (r,  2lr)-relations. 
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The motion of the liquid is of special simplicity in the central plane of thc pipe. 
A t  any point on OC, $ is either k;. or grr; in either case, cos 3 and 1.' vanish. At 
any such point the direction of the velocity of the liquid lies in the central plane; 
hence a particle of liquid once in this plane does not leave it in the subsequent 
motion. The motion in one half of the pipe is therefore quite distinct from that 
in the other and the central plane is clearly a plane of symmetry for the motion. 
The differential equation of the stream lines in the central plane is 

drlU = Ra2dB/Jt;(a2-r2). 

Writing r' = - (Lvjr) a#,/?$ and putting sin $ = I ,  we have 

substitution for L from (20)  in this equation gives 

dr ,  /do = ,&n( 1 - rf ) (4 + 34m - rf). ( 5  L) 

It, follows from (51) that 

( 5 2 )  

where h2 = 4 + 24m and where it has been assumed that B is measured from the 
point where the streamline crosses the central line r l  = 0. Equation (53) was 
derived by putting sin$ = 1 and therefore applies to only those parts of the 
streamlines in the central plane outside the circle we have called the central line; 
to obtain the parts inside the circle we write sin I) = - I ,  and so reverse the sign 
of fS in ( 5 2 ) .  

The other set of equations which are of interest are those giving the movement 
of liquid elements in relation to the central line. This can be visualized by 
constructing the projection of a streamline on the section I!? = const., taking 
these projections as sufficiently represented by = const., where #, is given 

Figure 3 shows the paths of particles projected on the cross-section of the pipe, 
in the cases of an elastico-viscous liquid for which m = 1 and of a Newtonian 
viscous liquid (for which m = 0). It can be seen that the form of the projections 
of the streamlines of the first liquid are not strongly dependent on its elasticity; 
the positions of the neutral points, where the velocity in the section vanishes, are 
slightly nearer the outer edge of the pipe in the case of the elastico-viscous 
liquid, being at r l  = 0.445, $ = 0 or rr when nz = 1, compared with r l  = 0.439, 
@ = 0 or n when m = 0. The data for the Newtonian liquid are taken from 
Dean's 1927 paper. 

However, elasticity of the type considered could strongly affect the pitch of 
the spirals in which particles of the liquid move along the pipe; figure 3 illu- 
strates the dependence of the form of the streandines in the central plane on the 

by (40). 
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parameter m, curves being plotted form = 0, m = 0.2 and m = 1.0. The Reynolds 
number used in the calculations was 63-3, this value being chosen so that the value 
0, as given by (52 ) ,  could be found in degrees by multiplying logarithms to the 

FIGURE 2 .  
andm=O 

Paths of particles project'ed on t'he cross-section of the pipe for 
1 (broken line). N and N' are the neutral points for m = 1 and m = 

m 
0, 

= 1 (full line) 
respcctively . 

\ ,/ 

FIGURE 3. The path of a particle in the central plane for various values of m. 

base 10 by 50 (cf. Dean 1927); and for the sake of coneenience in drawing we have 
assumed that alR is +. It is seen from figure 3 that an increase in r n  leads to a. 
spectacular decrease in the curvature of the streamlines in the central plane. 



Flow of an elastico-viscous liquid in a curved pipe 239 

4. The flux of liquid through the pipe 
The rate of flow through the pipe is a constant times 

/olrldrl 1: wd$ ,  

and only product and higher-order terms in cos $ and sin $ contribute to this in- 
tegral. Itfollows, sincew,makesnocontribution to  thisintegral (seeequation (49)), 
that  the flux through the pipe is independent of the curvature, to the first-order 
approximation; in order to study the variation of flux with curvature, therefore, 
we must introduce terms of higher order. This is carried out in the following 
paragraphs. 

Although the relevant equations are complicated, it is possible to simplify 
the working when the variation of flux with L2 only is required; the method of 
simplification used is an extension of the method used already by Dean (1928). 

For mathematical convenience, it is necessary to  restrict the discussion to 
liquids with short memories, i.e. liquids with short relaxation times. We shall 
neglect terms involving ( t  - t’)q, q 2 2 in equations (30) to (32). This approxima- 
tion is equivalent to neglecting terms involving 

sdy7QA7(7)d7 (q  2 2) 

in comparison with those involving 

IOm 7N(7)  d7 and l o rn  N(7)  d7. 

Such an approximation would be justified, for example, in the case of the dilute 
polymer solutions investigated by Oldroyd, Strawbridge & Toms (1951). 

Going through the same procedure as before, except that now terms involving 
(t  - t’)q (q 2) are ignored, it can be shown that 



When account is taken of the functional forms of 4, and w,, and use is made of 
(37),  we have from (53), (54) and ( 5 7 )  

where J>, F,, Ql, 0, and H, are functions of r1 which need not be more particularly 
specified; substituting these stress components into the associated equation of 
motion obtained from (16) and (17) after elimination of p", we find that the 
equation for $, is of the form 

V$$, = I, sin 2$, 

whence 4, = Jlsin2$, (59) 

p;r10)2 = 220~/ar, + Tl(rl) cos 2@+ T,(r,), (60) 

(61) 

n liere 1, and ,I, are functions of T,  only. Similarly, from (56) and (58 ) ,  

= i?wz/r, a@ + Kl(r l )  sin 2$. 

Substitution of these stresses in the associated equation of motion obtained 
from (18) gives an equation of the form 

where the dash denotes differentiation with respect to r,; whence w2 is of the form 
iVl(rl) cos 2$+N,(rl) .  The first of these terms need not be evaluated since it 
does not affect the flux. Since 4, and the second term in the expression for 
py11.s)2 give a contribution to this term only, it  follows that J1 and h', need not be 
evaluated. Thus the problem is reduced to finding T, in the expression for 
pyrlo)2, and then that part of to2 which is a function of r1 only (ii;,, say). 
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From ( 3 7 ) ,  (40), (49), (56), (60), we have 

!F2 = ( ; n ~ / ( 5 7 6 ) ~ )  ( - 2 . 2 ~ ~  + 68.4~;  - 166.8r: + 164.r: - SIT," + 19.3r:' - l-6ri3), ( 6 3 )  

where we have neglected terms of order m2 to be consistent with our present 
confinement of the discussion to liquids with short memories. Consideration 
of terms involving rl only in (63) gives 

d(r1dZ2/dr1)/dr1 = +(ICI;N, + n13N;) - d(r ,  T2)/dr1, (64) 

where it has been assumed that q51 = ill, cos $, w1 = N3 sin $. Equation (64) 
integrates to give 

the constant of integration being zero since tot is finite at rl = 0. Substituting 
for the quantities ill3, N3 and T, from (40), (49), (63) into (65) and integrating, 
we have 

Yldw2/dr1 = ~ L ~ L . A ~ - ~ ~ T ' ~ ,  (65) 

w2 = k(Ci76)-2{ - [0-1839 + 3.1897rn1 + [0*95+ 38-8mI r:- [2.06,87 + 77*55m]rf 

+ 12.475 + '38.366~1 Y: - r1.778 + 6 7 . 6 2 5 ~ ~ 1  r: + [0*785 + 25*86n~] ria 
- [0.3062 + 6.0333~11 ri2 + [0.0286 + 0-3714ml ri4 - 0.0016~:~},  (66) 

where the arbitrary constant of integration has been chosen so that V2 vanishes 
when rl = 1. 

The flux through the pipe per second is given by 

T.= [k7rI"zr W d k  

= 2n~i;,cr2 1, rll( I - r;)  + ~2~~~~ + 0 ( ~ 4 ) 1  drl. 

Substituting from (66) and evaluating the integral, we have 

= F,[1- (5$sL)2 (0.03058- 0*06426m)], (67) 

where F9 ( =  @naz/2) is the value of the flux per second through a straight pipe 
of the same cross-section under the same dynamic conditions. It is observed that 
thc presence of elasticity in the liquid decreases the dependence of the flux 
through the pipe on the curvature of the pipe, to second order in the curvaturc.t 

Concluding, therefore, we see that the main effect of elasticity of the type 
considered on the flow of an elastico-viscous liquid through a curved pipe under 
a pressure gradient is to decrease the curvature of the stream lines in the central 
plane and also to increase the volume of fluid flowing through the pipe in unit 
time. 

The authors are indebted to Prof. J. (2. Oldroyd for many helpful comments 
and suggestions. 

The reader is reminded that, equation (07) is valid only for small v:~Iues of m. 

16 Fluid Mrrh.  lfi 
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